SUSTAINABILITY AND RESILIENCE OF CRITICAL INFRASTRUCTURE SYSTEMS

ROSHI NATEGHI
IE & EEE
PURDUE UNIVERSITY, JUNE 2016

RESEARCH OVERVIEW

GOAL: DESIGNING SUSTAINABLE ADAPTATION TOOLS TO ENSURE RESILIENT CIS

USES:

- Planning at various temporal scales
- Hardening and mitigation decisions at various spatial scales

Methods:

- Data Analytics
- Complex Systems Theory
- * Risk and Decision Analysis

HURRICANES, POWER SYSTEMS AND CLIMATE CHANGE

EXTREME WEATHER INDUCED OUTAGES

HURRICANEINDUCED OUTAGE FORECASTING

A TYPICAL UTILITY RESPONSE CYCLE

CURRENT PRACTICES

MODEL DEVELOPMENT

METHODOLOGY

Ensemble Tree-based Method of:

Random Forest

Validation:

- Critical to bias-variance trade-off especially for complex methods;
- Good fit doesn't necessarily lead to strong predictive accuracy

11

SPATIALLY DETAILED MODEL

INPUT VARIABLES:

Antecedent conditions affecting tree strength, stability, and type of development

Exposure to high winds

Power System Data

- Number of poles, transformers, switches & miles of line (OH, UG)
- Tree trimming

Hazard to the system-

Climatic & Geographic Data

- Soil Moisture
- Long-term mean precipitation
- Short-term deviations from long-term precipitation
- Land use/land cover type
- Topographic data

Hurricane Data

 Local wind field (via physicsbased model)

VARIABLE SELECTION

Model Development:

Iterative process based on variables' contribution to out-of-sample accuracy

Final Input variables

- Number of customers
- 3-second gust wind speed
- Duration of wind above 20 m/s
- Soil moisture at different depths
- Tree trimming practices

OUTAGE MAPS

Ivan - Actual

Ivan - Predicted

SPATIALLY GENERALIZED MODEL

INPUT VARIABLES:

Antecedent conditions affecting tree strength, stability, and type of development

Exposure to high winds

Power System Data

Number of poles,
 transfermers, switches &
 miles of line (OH, UG)

Hazard to the system

Geographic Data

- Soil Moisture
- Long-term mean precipitation
- Short-term deviations from long-term precipitation
- Land use/land cover type
- Tepographic data

Hurricane Data

 Local wind field (via physicsbased model)

MODEL DEVELOPMENT:

FORECASTING PROCESS

SANDY

FORECASTS AT 84, 60, 36, 12, AND 0 HRS BEFORE LANDFALL. CENSUS TRACT LEVEL

CHALLENGES OF SANDY

- We predict cumulative outages, utilities generally report peak outages
- No reliable source of actual outage data at the same scale as our predictions

RESULTS OF SANDY

- DOE estimate: 8.5 million customers out at peak
- Our forecast estimate: 8 -10 million out:
 - within 8% of DOE's estimates for NY, PA, MA, RI, VA
 - overestimated outages for MD and DE
 - underestimated outages for CT

WHAT IF ANALYSIS

Assessing impacts of hypothetical storm events

LONG-TERM SIMULATION

SIMULATION STRUCTURE

For Each Replication:

BASELINE RESULTS

100-YEAR WIND SPEED

Plotting **Difference** From Baseline:

100-YR FRACTION W/T POWER

Plotting **Difference** From Baseline:

ELECTRICITY ADEQUACY PLANNING

POWER ADEQUACY RISK

Predict US building stock energy use + identify the key drivers of demand at a spatially detailed level.

PREDICTIVE ANALYTICS IN WATER

GREACE GROUNDWATER TRENDS

KEY STRESSORS GLOBALLY

- Industrialized agriculture
- Precipitation levels
- Power generation

US WATER CONSUMPTION

Key drivers:

- Population size
- Irrigation size
- energy generation
- urbanization and climatic variables.

THANK YOU!

A little boy it Port-Au-Prince, Haiti wearing oversized rain boots after the storm. Photo: Reuters